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A simple and efficient time-dependent method is presented for solving the steady
compressible Euler and Navier–Stokes equations with third-order accuracy. Owing
to its residual-based structure, the numerical scheme is compact without requiring
any linear algebra, and it uses a simple numerical dissipation built on the residual. The
method contains no tuning parameter. Accuracy and efficiency are demonstrated for
2-D inviscid and viscous model problems. Navier–Stokes calculations are presented
for a shock/boundary layer interaction, a separated laminar flow, and a transonic
turbulent flow over an airfoil. c© 2001 Academic Press
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1. INTRODUCTION

The calculation of some compressible flow problems requires the use of a high-accuracy
numerical scheme. Classical examples are the direct or large eddy simulation of turbulent
flows, instability phenomena such as aerodynamic buffeting, aeroacoustic problems, etc.

To construct a high-accuracy scheme, two methods are classically considered: one simply
increases the grid stencil of the scheme; the other uses compact or Pade approximations.
Compact schemes are attractive because of their narrow numerical dependence domain. In
computational fluid dynamics, they have been mainly developed with centered schemes (see
for instance [1, 3, 13, 17, 25, 29, 30]) using artificial viscosity, limiters, or numerical filters
for shock capturing. Upwind compact schemes have also been proposed for calculating
compressible flows (see for instance [11, 20, 28]).

Here, we present an efficient compact time-dependent method for solving the steady
compressible Euler and Navier–Stokes equations with high accuracy. In this method, the
process for getting high accuracy as well as the construction of the numerical dissipation
relies strongly on the residual vanishing at steady state. Starting from a basic centered
scheme, the idea of increasing the accuracy order is not to cancel the leading term of
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the truncation error, but to add a new error term so that the resulting truncation error is
expressed in terms of derivatives of the residual only. This does not lead to a correction for
each derivative in the governing equations but to a compact approximation that cannot be
derived by Pade formulae and requires no linear algebra. Similarly, the numerical dissipation
is residual-based and is consistent with an operator vanishing at steady state.

For simplicity and robustness, we use a first-order dissipation operator, which is compat-
ible with any accuracy order. More precisely, by applying this operator, a centered scheme
accurate at order 2p becomes a dissipative scheme accurate at order 2p− 1 (dissipation at
steady state comes from the truncation error of the dissipation operator). This paper studies
the casep = 2. The stencil of the dissipative scheme is then composed of 3× 3 points for
the 2-D Euler equations and(3× 3)+ 4= 13 points for the 2-D Navier–Stokes equations.

For constructing the dissipation operator, we follow along the lines of some of our
previous studies on second-order-accurate schemes of the Lax–Wendroff type [18, 19, 21]
and recent attempts to improve them by introducing a so-called characteristic time-step
matrix [7, 14, 15]. In this work, we present a rational construction of numerical dissipation
not derived from a modification of the Lax–Wendroff approach. This viewpoint brings a
better understanding of the dissipation operator and allows its application to high-accuracy
schemes. It should be noted that the dissipation operator is parameter free and that we
add no limiters or any other correction. In addition, the dissipation operator (and thus the
numerical solution) is independent of the time step used to reach the steady state.

The paper is organized as follows. Section 2 presents the design principles of the scheme
for a two-dimensional hyperbolic system of conservation laws. Section 3 describes the
complete determination of the dissipation operator for the two-dimensional case. Section 4
presents the fully discrete form of the scheme and its stability domain. Section 5 extends
the method to the compressible Navier–Stokes equations with a real third-order accuracy.
Section 6 briefly presents the main features of an implicit version of the scheme. Section 7
describes precise validations of the accuracy order and the efficiency for four model test
cases: a 2-D circular advection problem, a 1-D boundary layer model, a 2-D Poiseuille-
type problem and a 1-D inviscid B¨urgers model. Section 8 presents first applications to
the 2-D compressible Navier–Stokes equations: a laminar flow over a NACA0012 airfoil; a
shock/laminar boundary layer interaction on a flat plate; and a turbulent transonic flow over
a RAE2822 airfoil.These applications show the high accuracy and shock-capturing property
of the third-order scheme. Finally, some conclusions are drawn and possible extensions of
the method are discussed.

2. DESIGN PRINCIPLES

2.1. Residual-Based Compactness

Consider an initial-value problem for the hyperbolic system of conservation laws,

wt + fx + gy = 0, (1)

wheret is the time,x andy are space coordinates,w = w(x, y, t) is the state vector, and
f = f (w) and g = g(w) are flux components depending smoothly onw. The Jacobian
matrices of the fluxes are

A = d f

dw
and B = dg

dw
.
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Suppose that system (1) is discretized by a conservative scheme of the simple form

1

1t
(wn+1− wn)+ r̃ n = 0, (2)

wherewn is the numerical solution at time leveln1t , andr̃ n denotes some centered differ-
ence approximation to the steady state residual

r = fx + gy. (3)

Let v j,k be a mesh function defined on a uniform Cartesian mesh(xj = j δx, yk = k δy),
with stepsδx andδy of the same order, sayO(h). Consider the basic difference and average
operators:

(δ1v) j+ 1
2 ,k
= v j+1,k − v j,k (δ2v) j,k+ 1

2
= v j,k+1− v j,k

(µ1v) j+ 1
2 ,k
= 1

2
(v j+1,k + v j,k) (µ2v) j,k+ 1

2
= 1

2
(v j,k+1+ v j,k).

For smooth solutions, the simplest centered discretization ofr is

r̃0 = 1

δx
δ1µ1 f + 1

δy
δ2µ2g, (4)

where the subscriptsj, k are omitted for concision. For an exact steady solution (r = 0),
the truncation error of (4) reads

ε0 = δx2

6
fxxx+ δy

2

6
gyyy+ O(h4).

The second-order approximation (4) can be improved by correcting the leading error term.
Classically, this can be achieved either in compact or noncompact formulation.

Noncompact fourth-order approximation (NC).Here, the second-order error term is
corrected explicitly as

r̃ NC = 1

δx
δ1µ1

(
I − 1

6
δ2

1

)
f + 1

δy
δ2µ2

(
I − 1

6
δ2

2

)
g, (5)

whereI is the identity operator. This formula involves five points per direction. Forr = 0,
the truncation error of (5) is

εNC = − 1

30
(δx4 fxxxxx+ δy4gyyyyy)+ O(h6).

Pade–compact fourth-order approximation (PC).Here, the second-order term is cor-
rected implicitly using Pade fractions,

∇Pade
1 f = δ1µ1

I + 1
6δ

2
1

f, ∇Pade
2 g = δ2µ2

I + 1
6δ

2
2

g
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that are computed via the numerical solution of linear algebraic systems. The residual is
approximated by

r̃PC = 1

δx
∇Pade

1 f + 1

δy
∇Pade

2 g. (6)

It involves three points per direction. Forr = 0, the truncation error of (6) is

εPC = − 1

180
(δx4 fxxxxx+ δy4gyyyyy)+ O(h6).

As is well known, the numerical constant in the leading term of the truncation error is
smaller with this Pade-type scheme than with the noncompact fourth-order approximation.

Residual-based compact approximation (RBC).We now introduce a compact discretiza-
tion of r that does not require the solution of a linear system. The idea is no longer to correct
the truncation error of (4), but to add a new error term in each difference formula so that
the leading error term onr is expressed in terms of derivatives ofr only. Namely,r is
discretized by summing two centered differences, each of second-order accuracy:

r̃RBC= 1

δx
δ1µ1

(
I + 1

6
δ2

2

)
f + 1

δy
δ2µ2

(
I + 1

6
δ2

1

)
g. (7)

For r = 0, the truncation error of (7) is

εRBC= δx2

6
fxxx+ δy

2

6
fxyy+ δy

2

6
gyyy+ δx

2

6
gxxy+ O(h4)

= δx2

6
rxx + δy

2

6
r yy+ O(h4) = O(h4).

Expanding the truncation error up to order 6 gives

εRBC= δx4

120
rxxxx+ δx

2δy2

36
rxxyy+ δy4

120
r yyyy+ δx4

180
gxxxxy+ δy4

180
fxyyyy+ O(h6)

= 1

180
(δx4gxxxxy+ δy4 fxyyyy)+ O(h6).

Sincer = 0, this truncation error can also be written as

εRBC= − 1

180
(δx4 fxxxxx+ δy4gyyyyy)+ O(h6),

and we note that the numerical constant is the same as inεPC.
Fourth-order accuracy is obtained with RBC using 3× 3 points only andno linear al-

gebraic system. Compared to NC, the RBC formula (7) uses the near pointsj ± 1, k± 1
(corner points) instead of the more distant pointsj ± 2, k and j, k± 2. This stencil nar-
rowing has several advantages:

(1) unconditionally stable implicit versions can be easily derived—see Section 6;
(2) the numerical treatment of boundary conditions is straightforward;
(3) the truncation error constant is divided by 6;
(4) accurate extension to irregular meshes is easier on a compact stencil.
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Note that an approximation similar to (7) can be found in a paper by Abarbanel and Kumar
[1].

Higher-order. RBC approximation can be defined at any order of accuracy. For instance,
the formula

r̃ (6)RBC=
1

δx
δ1µ1

(
I + 1

6
δ2

2 −
1

180
δ4

2

)
f + 1

δy
δ2µ2

(
I + 1

6
δ2

1 −
1

180
δ4

1

)
g

is sixth-order accurate at steady state (see the truncation error of the fourth-order RBC
approximation). It uses 5× 5 points only and no linear algebraic system.

2.2. Residual-Based Dissipation

Of course the present high-accuracy schemes cannot be used without some numerical
dissipation. With the present Euler explicit time discretization, they would even be unstable.
There are two classical (and equivalent) ways to introduce dissipation:

• find an upwind expression of high accuracy forr̃
• add a dissipative term of high order to the scheme.

Here, we follow a different approach and add a dissipative term of order 1 that vanishes at
steady state.

More precisely, we now consider

1

1t
(wn+1− wn)+ r̃ n = P̃n, (8)

where P̃n is a centered difference approximation to a partial differential operatorP such
that:

• P brings “parabolicity” or “dissipation” (see Section 3)
• P = O(h), for robustness in the transient phase
• P vanishes at steady state (r = 0 ⇒ P = 0)
• P is independent of1t .

A simple choice ofP satisfying these criteria is

P = δx

2
(81r )x + δy

2
(82r )y = δx

2
[81( fx + gy)]x + δy

2
[82( fx + gy)]y, (9)

where81 and82 are matricial coefficients depending only on the space increments and on
the flux Jacobian matrices

81 = 81(A, B; δx, δy) = O(1)

82 = 82(A, B; δx, δy) = O(1).

Functions81 and82 will be precisely defined in the next section.
Choosing a 3× 3-point stencil for scheme (8), we define the discrete operatorP̃ from

classical centered formulae of second-order accuracy and, forr̃ , we set

r̃ = 1

δx
δ1µ1

(
I + θ

6
δ2

2

)
f + 1

δy
δ2µ2

(
I + θ

6
δ2

1

)
g (10)



A RESIDUAL-BASED COMPACT SCHEME 647

to include the simply centered approximation (4)—forθ = 0—and the RBC approximation
(7)—for θ = 1.

For an exact steady solution(wt = r = 0), the truncation error of scheme (8) is

ε = δx2

6
rxx + δy

2

6
r yy+ θ − 1

6
(δx2gx + δy2 fy)xy− δx

2
(81r )x − δy

2
(82r )y + O(h3).

Thusε is O(h2) for θ 6= 1 andO(h3) for θ = 1. Consequently, the dissipative scheme can
be third-order accurate at steady state on a 3× 3-point stencil.

Remark.

(a) The Lax–Wendroff scheme includes an operator similar toP but dependent on1t
and not so efficient as the one constructed in Section 3.

(b) The exact operatorP is not dissipative at steady state (r = 0⇒ P = 0). However
numerical dissipation exists at steady state and comes from the truncation error ofP̃ which
is O(h3) and involves fourth derivatives (see Section 4).

(c) Clearly, by choosing a 5× 5-point stencil, using for̃r a sixth-order approximation
and improving similarly the approximation for̃P, we can reach fifth-order accuracy at
steady state. In fact, the use of the present kind of dissipation does not bound the order of
accuracy at steady state.

3. CHOOSING Φ1 AND Φ2

3.1. Method

The question now is to determine functions81 and82 ensuring the stability of the time-
dependent scheme (8). During the unsteady evolution, this scheme is first-order accurate.
More precisely, it approximates

wt + 1t

2
wt t + O(1t2)+ fx + gy + O(h2) = P + O(h3), (11)

whereP = O(h). Assuming that1t = O(h), this gives

wt + fx + gy = O(h).

By derivating with respect to time,

wt t = −( ftx + gty)+ O(h) = −(Awt )x − (Bwt )y + O(h)

= [ A( fx + gy)]x + [B( fx + gy)]y + O(h). (12)

By substituting (12) into (11) and using the expression (9) forP, we find that scheme (8)
is a second-order approximation to

wt + fx + gy = P′ (13)

with

P′ = 1

2
[C1( fx + gy)]x + 1

2
[C2( fx + gy)]y

= 1

2
(C1Awx + C1Bwy)x + 1

2
(C2Awx + C2Bwy)y,
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where

C1 = δx81−1t A, C2 = δy82−1t B.

A necessary condition for the stability of scheme (8) is that the differential operatorP′ be
dissipative.

3.2. Single Conservation Law

Suppose that Eq. (1) is a single conservation law, i.e.,w, f , g, A, B, 81, and82, are
scalar-valued functions, and consider the quadratic formQ′ associated with the operator
P′,

Q′ = 1

2
[C1Aξ2+ (C1B+ C2A)ξη + C2Bη2] = 1

2
XT M ′X,

with

X =
[
ξ

η

]
M ′ =

[
C1A 1

2(C1B+ C2A)

1
2(C1B+ C2A) C2B

]
.

Dissipativity (in a broad sense) ofP′ means that the quadratic formQ′ is nonnegative
definite, i.e., the eigenvalues of the symmetric matrixM ′ are positive or null, which is
equivalent to {

C1B = C2A

C1A ≥ 0, C2B ≥ 0.

This can also be written as

δx81

A
= δy82

B
(14)

δx81A ≥ 1t A2, δy82B ≥ 1t B2. (15)

Since (15) shows that81 is of the sign ofA and that82 is of the sign ofB, we introduce
the notations

81 = sgn(A)8, 8 ≥ 0

82 = sgn(B)9, 9 ≥ 0

and

α = δx|B|
δy|A| . (16)

With these notations, the conditions (14)–(15) become:

9 = α8, (17)

1t

δx
|A| ≤ 8, 1t

δy
|B| ≤ 9. (18)
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FIG. 1. Parameterα = δx |B|
δy |A| representing the local advection orientation.

Note that the parameterα characterizes the local advection direction with respect to the
mesh. Forα < 1, that is|A|

δx >
|B|
δy , the advection direction is between thex-direction and a

mesh diagonal (see Fig. 1). Forα = 1, the advection is along a mesh diagonal. Forα > 1,
the advection direction is between they-direction and a mesh diagonal. Note also that, due
to (17) and|B|

δy = α |A|δx , the two inequalities (18) are equivalent.
Expressed with the functions8 and9, the dissipation operator reads as follows:

P = δx

2
[8sgn(A)( fx + gy)]x + δy

2
[9sgn(B)( fx + gy)]y. (19)

Consider now two choices of the pair(8,9) that are compatible with (17)–(18) and lead
to the simplest expression ofP. They are as follows:

(a) 8 = 1,9 = α.

Due to (18), the time step is bounded by1t
δx |A| ≤ 1. Unfortunately, for large values of

α (quasi-vertical advection), expression (19) shows that the dissipation in they-direction
becomes very high, i.e., the scheme becomes highly dissipative in the advection direction,
which is unacceptable.
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(b) 8 = 1/α,9 = 1.

The time step is bounded by1t
δy |B| ≤ 1. Now, for small values ofα (quasi-horizontal

advection), the dissipation in thex-direction becomes very high, which is also unacceptable.
Since the dissipation condition (17) prevents us from choosing8 = 9 = 1, except in the

very special case whereα = 1 (diagonal advection), we keep8 and9 as close as possible
to 1. More precisely, for eachα > 0, we look for8 ≥ 0 minimizing the distance

|8− 1| + |9 − 1| = |8− 1| + |α8− 1|.

The optimal solution is found to be

8 =
{

1 if α ≤ 1
1
α

if α > 1

and

9 = α8 =
{
α if α < 1
1 if α ≥ 1.

These functions are plotted in Fig. 2. They can also be written as

8 = min

(
1,

1

α

)
= min

(
1,
δy|A|
δx|B|

)
(20)

9 = min(1, α) = min

(
1,
δx|B|
δy|A|

)
.

For the above8 and9 functions, condition (18) is equivalent to

1t

δx
|A| ≤ 1 and

1t

δy
|B| ≤ 1,

FIG. 2. Coefficients8 and9 versus advection orientation.
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that is,

1t ≤ min

( |A|
δx
,
|B|
δy

)
.

Remember that this is only a necessary condition for stability. The true stability domain of
the scheme will be given in Section 4.

3.3. System of Conservation Laws

For an easy implementation of scheme (8) applied to the general system (1), the matrices
81 and82 are constructed through a direct extension of Section 3.2: the eigenvectors of81

are those ofA; the eigenvectors of82 are those ofB; and their eigenvalues are deduced from
the scalar definitions of81 and82. More precisely, letTA (respectivelyTB) be a matrix
whose column vectors are the right eigenvectors of the Jacobian matrixA (respectively
B) and leta(i ) (respectivelyb(i )) be the eigenvalues ofA (respectivelyB). Owing to the
hyperbolicity of (1),a(i ) andb(i ) are real, andTA andTB are regular, so that

A = TADiag
[
a(i )
]
T−1

A , B = TBDiag
[
b(i )
]
T−1

B ,

whereDiag[d(i )] denotes a diagonal matrix with diagonal entriesd(i ).
The matrices81 and82 are defined by

81 = TADiag
[
φ
(i )
1

]
T−1

A , 82 = TBDiag
[
φ
(i )
2

]
T−1

B , (21)

with

φ
(i )
1 = sgn(a(i ))φ(i ), φ

(i )
2 = sgn(b(i ))ψ(i ) (22)

φ(i ) = min

(
1,
δy |a(i )|
δx m(B)

)
, ψ(i ) = min

(
1,
δx |b(i )|
δy m(A)

)
, (23)

wherem(A) = mini (|a(i )|) andm(B) = mini (|b(i )|).

4. FULLY DISCRETE SCHEME FOR THE EULER EQUATIONS

On a uniform Cartesian mesh, the proposed scheme is of the form (8) wherer̃ is given
by (7) andP̃ is a centered difference approximation to the dissipative termP defined by
(9) with81 and82 given by (21)–(23).

To ensure linear stability and dissipation for the fully discrete scheme, it is important
to discretizeP properly. Replacing all the first derivatives in (9) by classical centered
differences would lead to instability (and also to an overly large scheme stencil). As in
the Lax–Wendroff method, it is necessary to use different centered expressions for the
“external” and “internal” first derivatives in (9). Moreover, multidimensional dissipation
in the sense of Kreiss cannot be achieved by using a rotated Richtmyer (cf. [2]) or a Ni
[23] type discretization ofP—which comes to define a predictor step at location( j +
1
2)δx, (k+ 1

2)δy. This is why we use a special approximation toP involving a predictor
step for each space direction, the stability and dissipation of which were proved in [19] for
the Lax–Wendroff method in any number of space dimensions.
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To be more specific, the dissipative term is discretized as

P̃ = 1

2
δ1

[
81

(
δ1 f

δx
+ µ1

δ2µ2g

δy

)]
+ 1

2
δ2

[
82

(
µ2
δ1µ1 f

δx
+ δ2g

δy

)]
, (24)

where81 at cell interfacej + 1
2, k is computed from (21)–(23) by replacingA and B by

their Roe averages(AR) j+1/2, k and(BR) j, k+1/2 [27] and similarly computing82 at cell
interface j, k+ 1

2.
It is convenient to express the full scheme in several stages. First a predictor51 at the

cell interface j + 1
2, k and a predictor52 at the cell interfacej, k+ 1

2 are defined. They
represent the terms in the brackets of (24). Then, the numerical fluxes are obtained from the
expression (7) of̃r and the predictors. Finally, the new cell values at the cell centers can be
deduced as

(a) predictors

(51)
n
j+ 1

2 , k
=
(
δ1 f + δx

δy
δ2µ1µ2g

)n

j+ 1
2 , k (25)

(52)
n
j, k+ 1

2
=
(
δy

δx
δ1µ1µ2 f + δ2g

)n

j, k+ 1
2

;

(b) numerical fluxes

(h1)
n
j+ 1

2 , k
=
[(

I + θ
6
δ2

2

)
µ1 f − 1

2
8151

]n

j+ 1
2 , k (26)

(h2)
n
j, k+ 1

2
=
[(

I + θ
6
δ2

1

)
µ2g− 1

2
8252

]n

j, k+ 1
2

;

and
(c) new cell-values

wn+1
j, k = wn

j, k −1t

(
δ1h1

δx
+ δ2h2

δy

)n

j, k

, (27)

where a parameterθ has been introduced for future reference.

The above 3× 3-point scheme is first-order accurate for an unsteady problem. At steady
state, it is third-order accurate forθ = 1 and second-order accurate otherwise. Forθ = 0,
r̃ is approximated by the classical centered difference (4) and one recovers the scheme
proposed in [15] from a modification of the Lax–Wendroff scheme.

Note also that for a 1-D problem in thex-direction, we get81 = sgn(AR) and82 = 0,
so that the numerical flux reduces to

h1 = µ1 f − 1

2
sgn(AR)δ1 f,

which corresponds to the classical Roe scheme [27]. At steady state, the formal order of
accuracy of this 1-D scheme is infinite.
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The L2-stability of the scheme (25)–(27) can be studied for the linear fluxesf = Aw,
g = Bw, whereA and B are scalar constants. In this case, the amplification factor of the
scheme reads

G = 1− (R+ i S),

wherei 2 = −1 and

R = 81 Ȧ(1− cosξ)+82Ḃ(1− cosη)+ 1

2
(81Ḃ+82 Ȧ) sinξ sinη

S= Ȧ

[
1− θ

3
(1− cosη)

]
sinξ + Ḃ

[
1− θ

3
(1− cosξ)

]
sinη,

with

Ȧ = 1t

δx
A, Ḃ = 1t

δy
B,

andξ , η are the reduced wave numbers in thex andy directions.
The stability domain of the scheme, that is the domain in which|G| ≤ 1 in terms of

Ȧ and Ḃ, is shown in Figs. 3a and 3b forθ = 0 (second-order) andθ = 1 (third-order),
respectively. Note that the stability domain is larger for the third-order version than for the
second-order one.

5. FULLY DISCRETE SCHEME FOR THE NAVIER–STOKES EQUATIONS

The Navier–Stokes equations can be written in the form

wt + ( f E − f V )x + (gE − gV )y = 0, (28)

where f E = f E(w) andgE = gE(w) stand for the Euler fluxes, andf V = f V (w,wx, wy)

andgV = gV (w,wx, wy) stand for the viscous fluxes.
System (28) is discretized in the same way as system (1), that is,

1

1t
(wn+1− wn)+ r̃ n = P̃n, (29)

wherer̃ n denotes a centered approximation to the steady-state residual

r = ( f E − f V )x + (gE − gV )y, (30)

and P̃n is a centered approximation to

P = δx

2
(81r )x + δy

2
(82r )y. (31)

Only the definition ofr has changed. Note that since the operatorP now contains third-order
derivatives, it is no longer purely dissipative.

To simplify the presentation of the fully discrete scheme, we now assume that the viscous
fluxes read

f V = ν(1)wx + ν(2)wy, gV = ν(3)wx + ν(4)wy, (32)
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FIG. 3. Advection case. (a) Stability domain of the residual-based second-order scheme (θ = 0). (b) Stability
domain of the residual-based third-order scheme (θ = 1).

whereν(1), ν(2), ν(3), andν(4) are constant viscosity coefficients ensuring physical dissipa-
tion, i.e.,

ν(1) ≥ 0, ν(4) ≥ 0,
(
ν(2) + ν(3))2 ≤ 2ν(1)ν(4).

The only work left to do is to revise our compact approximation on the left-hand side of
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(29) to include the second derivative. Here, the discrete residualr̃ should be

r̃ = 1

δx
δ1

[(
I + 1

6
δ2

2

)(
µ1 f E − ν(1) δ1w

δx

)
− ν(2)µ1µ2

δ2w

δy
− 1

12
ν(1)

δ3
1w

δx

]

+ 1

δy
δ2

[(
I + 1

6
δ2

1

)(
µ2gE − ν(4) δ2w

δy

)
− ν(3)µ1µ2

δ1w

δx
− 1

12
ν(4)

δ3
2w

δy

]
. (33)

A Taylor expansion of (33) gives

r̃ = r + τe+ τa + O(h4),

wherer is the exact residual,

r = fx + gy =
(

f E − ν(1)wx − ν(2)wy
)

x +
(
gE − ν(3)wx − ν(4)wy

)
y;

τe is the leading term of the truncation error for the classical centered approximation tor ,

τe = δx2

6
f E
xxx−

δx2

12

(
ν(1)wx

)
xxx−

δx2

6

(
ν(2)wy

)
xxx−

δy2

6

(
ν(2)wy

)
xyy

+ δy
2

6
gE

yyy−
δy2

12

(
ν(4)wy

)
yyy
− δy

2

6

(
ν(3)wx

)
yyy
− δx

2

6

(
ν(3)wx

)
xxy
;

andτa is the contribution of the second-order termsaddedto the classical centered formulae
in (33) in order to produce derivatives ofr in the total discretization error,

τa = δy2

6

(
f E − ν(1)wx

)
xyy
− δx

2

12

(
ν(1)wx

)
xxx
+ δx

2

6

(
gE − ν(4)wy

)
xxy
− δy

2

12

(
ν(4)wy

)
yyy
.

Clearly,

τe+ τa = δx2

6

(
f E − ν(1)wx − ν(2)wy

)
xxx
+ δx

2

6

(
gE − ν(3)wx − ν(4)wy

)
xxy

+ δy
2

6

(
f E − ν(1)wx − ν(2)wy

)
xyy
+ δy

2

6

(
gE − ν(3)wx − ν(4)wy

)
yyy

= δx2

6
rxx + δy

2

6
r yy,

so that one finally gets

r̃ = r + δx
2

6
rxx + δy

2

6
r yy+ O(h4), (34)

exactly as in Section 2.
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Thus, the fully discrete scheme reads as follows:

(a) predictors:

(51)
n
j+ 1

2 , k
=
[
δ1

(
f E − ν(1)µ1

δ1w

δx
− ν(2)µ2

δ2w

δy

)
+ δx
δy
δ2

(
µ1µ2gE − ν(3)µ2

δ1w

δx
− ν(4)µ1

δ2w

δy

)]n

j+ 1
2 , k (35)

(52)
n
j, k+ 1

2
=
[
δy

δx
δ1

(
µ1µ2 f E − ν(1)µ2

δ1w

δx
− ν(2)µ1

δ2w

δy

)
+ δ2

(
gE − ν(3)µ1
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δx
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δ2w

δy

)]n
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2

;

(b) numerical fluxes:

(h1)
n
j+ 1

2 , k
=
[(

I + θ
6
δ2

2

)(
µ1 f E − ν(1) δ1w

δx

)
− ν(2)µ1µ2

δ2w

δy
− θ

12
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δ3
1w
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2
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]n
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2 , k

(36)

(h2)
n
j, k+ 1

2
=
[(

I + θ
6
δ2

1

)(
µ2gE − ν(4) δ2w

δy

)
− ν(3)µ1µ2

δ1w

δx
− θ

12
ν(4)

δ3
2w

δy
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2
8252

]n

j, k+ 1
2

;

(c) new cell values:

wn+1
j, k = wn

j, k −1t

(
δ1h1

δx
+ δ2h2

δy

)n

j, k

. (37)

At steady state, the above scheme is third-order accurate forθ = 1 and second-order accurate
otherwise. Forθ = 0, we recover the second-order scheme proposed in [7].

Remark.

(a) The second- and third-order schemes share the same(3× 3)+ 4= 13 point stencil.
This stencil is sufficient to approximate the corrective terms specific to the third-order
scheme for the Navier–Stokes equations.

(b) For viscous flow problems, the functions81 and82 could take into account the
physical viscosity in order to reduce the numerical dissipation in viscous layers. In the
present work however, we retain for viscous applications the functions81,82 defined for
the Euler equations: this choice has no effect on the order of accuracy.

The stability domain of scheme (35)–(37) is displayed in Figs. 4a and 4b, for a choice of
fluxes corresponding to a model boundary layer problem:f E = Aw,gE = 0, f V = 0,gV =
νwy. Note that the present explicit scheme of third-order accuracy has a large stability do-
main.
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FIG. 4. Advection-diffusion case. (a) Stability domain of the residual-based second-order scheme (θ = 0).
(b) Stability domain of the residual-based third-order scheme (θ = 1).

6. IMPLICIT VERSION OF THE SCHEME

The efficiency of steady-state calculations may be increased by adding a suitable implicit
stage to the previously presented scheme. In this section, we shortly present the implicit
version of the scheme. Let us first consider the case of the Euler equations. Applying
the Euler backward time-discretization to the explicit scheme (25)–(27), linearizing the
numerical fluxes taken at time(n+ 1)1t , and simplifying the resulting linear implicit
operator to retain only derivatives in thex and y directions that can be discretized on a
three-point stencil (implicit mixed second-order derivatives coming from the dissipative
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term are dropped for both the second- and third-order schemes and so are the implicit
mixed third-order derivatives specific to the third-order scheme) yields an implicit stage of
the Harten type [12] (with8|A|, 9|B| in the second-order terms instead of|A|, |B| for
classical Roe-type schemes),

1w j, k + 1t

δx

[
µ1(Aδ11w

n) j, k − 1

2
δ1(8|A|δ11w

n) j, k

]
+ 1t

δy

[
µ2(Bδ21w

n) j, k − 1

2
δ2(9|B|δ21w

n) j, k

]
= 1wexpl

j, k , (38)

where1wn
j,k = wn+1

j,k − wn
j,k, and1wexpl

j,k is the similar time increment given by the ex-
plicit stage. From now on, we will refer to the second- (respectively third) order scheme
as scheme (38) withθ = 0 (respectivelyθ = 1) in the explicit stage (25)–(27); strictly
speaking, second- or third-order accuracy is reached only at steady state.

The implicit scheme (38) is linearly stable forθ = 0 andθ = 1 and offers good damping
properties when used with large CFL numbers. The amplification factor of the scheme is
displayed in Figs. 5a and 5b in the case of a model advection problem,wt + awx + bwy = 0,
with a andb fixed at constant values. The second-order scheme leads to better damping

FIG. 5. Isovalues of the amplification factor of scheme (38) in the reduced wave-numbers plane. 2-D advection
problem:a1t/δx = b1t/δy = 100. (a) Second-order scheme (θ = 0). (b) Third-order scheme (θ = 1).
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than the third-order scheme, which was expected since the third-order explicit stage contains
third derivatives which were not made implicit in order to keep the scheme simple. However,
thanks to the method’s compactness, the simplifications performed on the implicit stage do
not significantly degrade the efficiency of the scheme, which would not be the case if a
third-order MUSCL-type explicit stage were coupled with the implicit stage retained in
(38) (see [26] for instance). For practical applications, it is usually not possible to directly
solve the implicit stage (38) due to CPU cost and memory storage issues, and approximate
solution techniques such as alternate-line relaxation of the Jacobi or Gauss-Seidel type
are typically used instead. Tools to analyze the stability and efficiency of relaxed implicit
schemes were presented in [6]. For a 2-D model advection problem, it can be shown, using
these tools, that scheme (38) is linearly unconditionally stable when its implicit stage is
solved using an alternate-line Gauss–Seidel relaxation; moreover, only a few inner iterations
of the relaxation process (typically one or two) are required to ensure a damping very close
to that of the direct solver.

In the case of the Navier–Stokes equations, an implicit stage is built from the explicit
scheme (35)–(37) following the same lines as in the Euler case: only derivatives in thex and
y directions that can be approached using three-point formulae are retained in the implicit
stage in order to keep it simple. This choice leads to the following implicit scheme:

1w j, k + 1t

δx

[
µ1(Aδ11w

n) j, k − δ1

((
1

2
8|A| + AV

δx

)
δ11w

n

)
j, k

]

+ 1t

δy

[
µ2(Bδ21w

n) j, k − δ2

((
1

2
9|B| + BV

δy

)
δ21w

n

)
j, k

]
= 1wexpl

j, k , (39)

with AV = ∂ f V (w,wx, wy)/∂wx, BV = ∂gV (w,wx, wy)/∂wy.
The implicit scheme (39) is linearly stable forθ = 0 andθ = 1. The efficiency of the

scheme was studied for a 2-D linear advection–diffusion problem,wt + awx = νwyy, with
the following choice of numerical parameters:1x = 1y = h, a1t

h = CFLmin(1, Reh

2 ),
ν1t
h2 = CFLmin( 1

2,
1

Reh
), where Reh = ah

ν
denotes the cell Reynolds number. It was ob-

served that the second-order scheme offers a better damping than the third-order scheme,
which was expected since a greater number of simplifications was performed on this latter
when building the implicit stage. However, in spite of these numerous simplifications, the
third-order scheme offers a reasonably good damping at large time steps as soon as the
cell Reynolds number is not too small, which is indeed the case for large regions of flows
in practical problems (see Figs. 6a–6d). The analysis of a relaxed version of the implicit
stage (39) led to the same conclusion as in the Euler case: a single iteration of an alternate
Gauss–Seidel relaxation technique is sufficient to provide an efficiency very close to that of
a direct solution of (39). This relaxation technique will be applied for all the computations
presented in the following sections.

7. VALIDATIONS FOR MODEL PROBLEMS

The theoretical properties of the residual-based scheme are studied in this section through
the calculation of several model problems, the exact steady solutions of which are known,
allowing the computation of the actual accuracy orders and a detailed assessment of the
extra precision provided by the third-order method.
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FIG. 6. Isovalues of the amplification factor of scheme (39) in the reduced wave-numbers plane. 2-
D advection–diffusion problem. (a)CFL= 100, Reh = 0.5. Second-order scheme (θ = 0). (b) CFL= 100,
Reh = 0.5. Third-order scheme (θ = 1). (c)CFL= 100, Reh = 5. Second-order scheme (θ = 0). (d)CFL= 100,
Reh = 5. Third-order scheme (θ = 1).

7.1. Rotational Advection

We consider the linear advection with rotation around the point (x = 1, y = 0) of a smooth
Gaussian profile over the square domain [0, 1]× [0, 1], similar to [24]. More precisely, we
look for the steady solution of the following initial boundary-value problem:

∂w
∂t + y ∂w

∂x + (1− x) ∂w
∂y = 0, 0< x < 1, 0< y < 1;

w(x, y, 0) = 0, 0< x < 1, 0< y < 1;
w(x, 0, t) = exp

(−50
(
x − 1

2

)2)
, 0≤ x ≤ 1, t ≥ 0;

w(x, 1, t) = 0, 0≤ x ≤ 1, t ≥ 0;
w(0, y, t) = 0, 0≤ y ≤ 1, t ≥ 0.

(40)

On the boundary part (x = 1, 0≤ y ≤ 1), no condition is required (outflow boundary).
Numerically, the boundary values are obtained from extrapolation of the interior values.
The exact steady solution isw = conston any circle of center(1, 0). The numerical solutions
obtained with the second-order scheme (defined by formulae (25)–(27), (38) withθ = 0) and
the third-order scheme (defined by the same formulae withθ = 1) using a(J = 81)× (K =
81) uniform Cartesian mesh are displayed in Fig. 7a, along with the exact steady solution.
The iso-lines of the numerical solution are nearly perfect circles and cannot be distinguished
from those of the exact solution. The numerical solution along the mesh diagonaly = 1− x
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FIG. 7. Rotational advection. (a) Isovalues ofw(x, y) on an 80× 80 grid. (b) Close-up of the distribution of
w(x, y) along the diagonaly = 1− x.

is also presented in Fig. 7b and allows us to observe the effective higher accuracy of the
third-order method with respect to the second-order one. More precisely, theL2-norm errors
between the exact solution and the numerical solutions corresponding to various mesh sizes
(1x = 1

(J−1) = 1y = 1
(K−1) ) are plotted in Fig. 8: the second-order accuracy of theθ = 0

scheme and the third-order accuracy of theθ = 1 scheme are clearly demonstrated. The
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FIG. 8. Rotational advection. (a) Computed orders of accuracy. (b) Convergence and error history on an
80× 80 grid.

convergence history of the second- and third-order computations is monitored through the
L2-norm of 1w

1t on the computational domain and displayed in Figs. 8a and 8b. For both
schemes, the implicit stage is solved using a single iteration of an alternate-line symmetric
Gauss–Seidel relaxation and a CFL number equal to 100 (larger CFL numbers can be used
but an asymptotic behavior is reached), yielding fast convergence to steady state. Now, an
important concern is the following: since the present schemes are higher order only at steady
state,what is the effect of stopping at some level of the residual on the actual accuracy of
the solution? This can be checked in Fig. 8. On the 80× 80 grid, one observes that after
10 time iterations only, the residual is equal to 10−4, while the actual error has already
converged to its steady state value, i.e., third-order accuracy is really achieved. Due to this
error-convergence efficiency, the residual-based approach appears to be working concept.
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7.2. 1-D Boundary-Layer Model

We now consider the following 1-D viscous flow model problem:
wt + awx = νwxx, 0< x < L;
w(x, 0) = 0, 0< x < L;
w(0, t) = 0, t ≥ 0;
w(L , t) = 1, t ≥ 0.

(41)

The exact steady solution of (41) on a grid( j1x)0≤ j≤J is given byw j = (1− exp( j Reδ))/
(1− exp(Re)), where Re denotes the Reynolds number, Re= aL/ν, and Reδ = aδx/ν =
Re/J denotes the cell Reynolds number. In the present computations,a = 1, ν = 0.1,
andL = 1, so that Re= 10 and Reδ = 10/J. The numerical solutions obtained with the
1-D second-order scheme (deduced from formulae (35)–(37), (39) withθ = 0) and the
third-order scheme (defined by the same formulae withθ = 1) using a uniform grid of
20 cells (Reδ = 1/2) are presented in Fig. 9a, along with the above exact steady solution
they approach closely. A closeup of these solutions (Fig. 9b) shows the higher precision
of the third-order scheme. The actual orders of accuracy of the schemes, based on several
computations using different grid refinements, are plotted in Fig. 10a: they are close to the
theoretical second and third orders. The convergence and error history of the schemes is
displayed in Fig. 10b: third-order accuracy for this viscous problem is obtained after very
few iterations, prior to full convergence of the residual to machine accuracy steady state.

7.3. 2-D Poiseuille Flow Model

We are now looking for an approximate steady solution of the following problem:
wt + awx = νwyy, 0< x < L , 0< y < L;
w(x, y, 0) = 1, 0< x < L , 0< y < L;
w(x, 0, t) = w(x, L , t) = 0, 0< x < L , t ≥ 0;
w(0, y, t) = w0(y), 0< y < L , t ≥ 0.

(42)

At steady state, problem (42) may be viewed as modelling a Poiseuille flow: a profile,
prescribed at inflowy = 0, is advected and diffused between two solid walls on which its
value is fixed to zero (see Fig. 11a). The inflow is chosen equal tow0(y) = sin(π y

L ), so

that the exact steady solution of (42) is given byw(x, y) = exp(−π2

Re
x
L )sin(π y

L ), where
Re= aL/ν denotes the Reynolds number, equal to 10 in our case (a = 1,ν = 0.1, L = 1).
Thew-profiles along the outflow boundaryx = 1 given by scheme (35)–(37), (39) on a
uniform Cartesian mesh of(J = 20)× (K = 20) points are displayed in Fig. 11b along
with the above exact solution. Once again the excellent accuracy of the third-order scheme
is observed. The actual orders of accuracy of the schemes are plotted in Fig. 12a: they are
in very good agreement with the theoretical orders. The convergence and error history of
the schemes is displayed in Fig. 12b: the slower convergence of the third-order scheme is in
accordance with the amplification factor analysis in Section 6. Note that the slower decay
of the residual only slightly affects the convergence on the error, which reaches a steady
state anyway after few iterations. Computations performed on the same grid with a smaller
diffusion coefficientν, i.e., a larger cell Reynolds number, led to a much smaller difference
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FIG. 9. 1-D boundary-layer model. (a) Exact and numerical solutions on a grid of 20 cells. (b) Closeup of the
solutions.

of convergence rate between the second- and third-order schemes, as predicted in Section 6
from the amplification factor study.

7.4. Inviscid B̈urgers Model

Here, we simply check the shock-capturing property of the scheme on the simple nonlinear
problem: 

wt + (w2/2)x = 0, 0< x < 1;
w(x, 0) = 1− 2x, 0≤ x ≤ 1;
w(0, t) = 1, t > 0;
w(1, t) = −1, t > 0.

(43)

The exact steady solution of (43) is a shock betweenw = 1 andw = −1. The numerical
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FIG. 10. 1-D boundary-layer model. (a) Computed orders of accuracy. (b) Convergence and error history on
a 20-point grid(CFL= 100).

solution obtained with the third-order RBC scheme usingδx = 1/20 is shown in Fig. 13: the
shock profile is spread on two mesh cells without oscillation. At CFL= 100, the residual
is 10−6 after 20 time iterations and it reaches machine-zero in about 40 time iterations.

The inviscid and viscous results obtained in this section for model problems validate the
new design concept of the schemes presented in this paper: residual-based compactness and
dissipation lead to efficient and high-accuracy methods for multidimensional inviscid and
viscous problems.

8. APPLICATIONS TO VISCOUS COMPRESSIBLE FLOW PROBLEMS

In this section, some viscous flow computations performed with the proposed residual-
based scheme are presented. For these first applications, the extension of the scheme to
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FIG. 11. 2-D Poiseuille flow model. (a) Isovalues ofw(x, y). (b) Closeup onw(x, y) along the outflow
boundary.

curvilinear meshes was realized in a straightforward finite-volume formulation that does
not necessarily guarantee a true second- or third-order accuracy on nonregular meshes. We
are not able to compute the real order of accuracy anyway-since the exact solutions are
here unknown. The present analysis aims rather at assessing the ability of the third-order
scheme (θ = 1) to provide accurate solutions for realistic applications and whether to use
it instead of the second-order scheme (θ = 0) which has already been successfully applied
to the computation of viscous flows over airfoils and wings in previous studies [5, 7].
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FIG. 12. 2-D Poiseuille flow model. (a) Computed orders of accuracy. (b) Convergence and error history on
a 20× 20 grid(CFL= 100).

8.1. Separated Laminar Flow over a NACA0012 Airfoil

The laminar flow atM∞ = 0.5 and Re= 5000 over a thermally insulated NACA0012
airfoil at zero incidence is computed using a series of C meshes containing the same number
of points (150× 64)—only the upper part of the airfoil is considered owing to the symmetry
of the problem—but with different mesh spacing at the wall, varying from 10−4 chord for
the finest mesh up to 10−2 chord for the coarsest mesh. For this problem, the main flow
feature is a separation region occurring near the airfoil trailing edge (see the Mach contours
displayed in Fig. 14, where the recirculation bubble appears as a region of low Mach number
flow). We first checked that the results provided by the residual-based schemes compared
well with other published results. The pressure and viscous drag coefficients as well as the
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FIG. 13. 1-D Bürgers problem. Typical numerical shock structure.

location of the separation point computed using the third-order scheme on the finest grid
are indeed close to the values obtained in [8, 22] on grids with similar refinement at the
wall (see Table I). Note also that on this finest mesh the second- and third-order schemes
yield almost the same results so that using the third-order scheme does not seem especially
attractive.

FIG. 14. Laminar flow over a NACA0012 airfoil. Third-order computation on finest mesh. (a) Mach contours.
(b) Pressure contours.
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TABLE I

Viscous and Inviscid Drag Coefficients and Separation Location

(Chord %) for NACA0012 Airfoil a

Method C Df C Dp xs

Present 2nd-order scheme 0.03235 0.02271 80.3
Present 3rd-order scheme 0.03230 0.02277 80.7

[8] 0.0325 0.0226 81.9
[22] 0.0332 0.0229 81.4

a (M = 0.5, Re= 5000,α = 0 deg).

However, let us now investigate the effect of grid coarsening on the second- and third-
order numerical solutions. All the computations were performed using a relaxed version of
the implicit schemes andCFL= 100, which provided a fast convergence to steady state in
all cases, except for the second-order scheme on the coarsest grid, which did not converge
properly because of a lack of spatial resolution in the separation region; decreasing the CFL
number did not allow the second-order scheme to converge on this grid, for which the mesh
size at the wall leads to less than 10 points in the boundary layer. On the same grid, the
third-order scheme reached a machine accuracy steady state in 150 iterations. It is clear
from Figs. 15a and 15b that the third-order scheme is much less sensitive to grid coarsening
than the second-order scheme: the shift on the viscous drag prediction when multiplying
the mesh size at the wall by 75 (both schemes reach steady state for a mesh size at the wall
between 1× 10−4c (or below) and 7.5× 10−3c) is about 12.5% for the third-order scheme
and 25% for the second-order scheme; the shift on the inviscid drag does not exceed 2%
for the third-order scheme while it is about 30% for the second-order scheme. The low
sensitivity of the third-order scheme to grid coarsening is also depicted in Figs. 16a and 16b
where the computed skin-friction is plotted for different grid sizes. The coarsening tends
to lower the skin-friction peak located near the leading edge for both schemes but with a
slower decrease for the third-order scheme. More importantly, the coarsening has only a
weak influence on the third-order prediction outside the leading-edge region: the separation
point, identified as the point where skin-friction becomes zero, shifts only slightly, even on
very coarse grids. Meanwhile, the second-order prediction is much more affected by the
coarsening on the whole airfoil length and eventually fails to converge.

8.2. 2-D Shock/Boundary Layer Interaction

In order to assess the robustness of the residual-based scheme, the interaction of an
oblique shock wave with a laminar boundary layer is computed. The test-case considered
has been experimentally and numerically studied by Degrezet al. [9], and numerical
simulations were performed by other authors [16]. The freestream Mach number is 2.2;
the Reynolds number based on the distanceXsh between the plate leading edge and the
shock impingement point is 9.8645× 104; the shock angle with respect to the horizontal
is −30.027o (see [9] for more details). The computational grid is the one used in [16]:
it contains 74 points uniformly distributed in the streamwise direction, betweenx = −0.18
andx = 2.01 (the plate leading edge is located atx = 0), and 62 points in the direction
normal to the plate, with a mesh size at the wall about 1.5× 10−4. The CFL number is
equal to 10.
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FIG. 15. Laminar flow over a NACA0012 airfoil. (a) Effect of mesh coarsening on the computed pressure
drag. (b) Effect of mesh coarsening on the computed skin-friction drag.

The separation and reattachment location of the boundary layer may be identified on the
computed skin-friction distribution (see Fig. 17a) as those points whereC f changes sign.
Their computed values agree reasonably well with the experiment and compare favourably
with the values obtained in [16] using a third-order-biased upwind total variation diminishing
(TVD) scheme on the same Cartesian mesh (see Table II). The pressure distributions along
the plate are displayed in Fig. 17b: to allow a comparison with [9] the pressures have been
normalized by the minimum pressurep0 just upstream of the interaction. The computations
compare well with the experiment but the predicted pressure gradient at reattachment is too
steep with respect to this experiment. However, the third-order distribution more closely
approaches the distribution measured in [9].



A RESIDUAL-BASED COMPACT SCHEME 671

FIG. 16. Laminar flow over a NACA0012 airfoil. Effect of mesh coarsening on the computed skin-friction
distribution. (a) Second-order scheme. (b) Third-order scheme.

8.3. Turbulent Transonic Flow over a RAE 2822 Airfoil

The last problem considered is the turbulent flow over a RAE2822 airfoil, Case 9 of Cook
et al. [4], assumed to correspond to Re= 6.5× 106, M∞ = 0.734, andα = 2.54 deg,
following the wind tunnel corrections suggested in [10]. The two-layer algebraic eddy

TABLE II

Separation and Reattachment in Shock/Boundary Layer Interaction

Separation(X/Xsh) Reattachment(X/Xsh)

Present 2nd-order scheme 0.78 1.22
Present 3rd-order scheme 0.76 1.22
[16] 0.745 1.39
Computation [9] 0.79 1.24
Experiment [9] 0.78 1.28
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FIG. 17. Shock/boundary layer interaction. (a) Skin-friction distribution along the plate. (b) Pressure distri-
bution along the plate.

viscosity model of Baldwin–Lomax is used. The computational C-mesh contains(320× 64)
points, with 260 points on the airfoil; the far-field is located at 10 chord lengths from the
airfoil and the first mesh interval normal to the body is about 6× 10−6 chord length. The
CFL number is equal to 20. A comparison of the results with the experiment is shown in
Fig. 18: there is close agreement with the experiment on the pressure coefficient, and the
computed pressure distribution compares well with the results presented by contributors
to the EUROVAL project [10]; in particular, the residual-based schemes provide a good
shock resolution without requiring any tuning parameter. Though not shown here for space
reasons, the skin-friction distribution and velocity profiles at different locations along the
airfoil are also in good agreement with both the experimental values given in [4] and the
numerical results obtained in [10]. Note that, for this test case, we did not see any noticeable
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FIG. 18. Turbulent flow over a RAE2822 airfoil. (a) Wall-pressure distribution. (b) Third-order scheme Mach
contours.

difference between the second- and third-order results. Possibly, in such a calculation, a
rigorous implementation of the residual-based correction on a curvilinear mesh would be
of interest.

9. CONCLUSION

A robust and efficient compact method for solving the steady compressible Euler and
Navier–Stokes equations with high accuracy has been presented. Compactness and high
accuracy are obtained by expressing the truncation error in terms of derivatives of the
residual, vanishing at steady state. Robustness and good shock-capturing properties are
achieved thanks to a first-order dissipation, also based on the residual, that becomes a
high-order term at steady state only. Compactness and first-order dissipation allow the
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construction of an efficient implicit version of the scheme. These properties were assessed
on model advection and advection–diffusion problems using uniform Cartesian meshes,
which demonstrated true third-order-accurate solutions, stability, and quick convergence to
the steady state. Then, calculations of viscous compressible flow problems, on nonuniform
Cartesian meshes and curvilinear grids, showed the ability of the third-order scheme to
handle flows with shocks and to provide reasonably good solutions on coarse grids. The
low sensitivity of the third-order scheme to grid coarsening, clearly demonstrated on a
separated laminar flow problem, could be exploited in, for instance, a multigrid strategy.

In the present work, true high accuracy was not ensured on nonregular grids because,
in a first step, the truncation error corrections developed on a regular grid were retained.
However, greater accuracy could be achieved by expressing the scheme truncation error
on such nonregular grids and correcting this expression in order to make derivatives of the
residual appear. Work is in progress on this subject.

The residual-based scheme could also be applied to other applications which do not neces-
sarily require distorted grids, such as the direct simulation of turbulent flows or aeroacoustic
problems. Concerning this type of application, it should be noted that the ideas developed
in this study to build a third-order scheme are not limited to this order of accuracy, and
higher-order schemes could be devised using the strategy suggested in Section 2.1.

Note also that the extension of the scheme to three-dimensional problems is very straight-
forward. For instance, the residual-based compact approximation (7) will become

r̃ RBC = 1
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6
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1 +
1

6
δ2

2

)
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using obvious notations.
Finally, the generalization of the concept to unsteady problems is easy to devise: the

physical time-derivative must simply be included in the residual when building the high-
order correction and the dissipative term in order to ensure high-order space accuracy. A
dual time step approach will conveniently allow a high-order accuracy in time.
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