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A simple and efficient time-dependent method is presented for solving the steady
compressible Euler and Navier—Stokes equations with third-order accuracy. Owing
to its residual-based structure, the numerical scheme is compact without requiring
any linear algebra, and it uses a simple numerical dissipation built on the residual. The
method contains no tuning parameter. Accuracy and efficiency are demonstrated for
2-D inviscid and viscous model problems. Navier—Stokes calculations are presented
for a shock/boundary layer interaction, a separated laminar flow, and a transonic
turbulent flow over an airfoil. © 2001 Academic Press
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1. INTRODUCTION

The calculation of some compressible flow problems requires the use of a high-accul
numerical scheme. Classical examples are the direct or large eddy simulation of turbu
flows, instability phenomena such as aerodynamic buffeting, aeroacoustic problems, e

To construct a high-accuracy scheme, two methods are classically considered: one sir
increases the grid stencil of the scheme; the other uses compact or Pade approxima
Compact schemes are attractive because of their narrow numerical dependence doma
computational fluid dynamics, they have been mainly developed with centered schemes
for instance [1, 3, 13, 17, 25, 29, 30]) using artificial viscosity, limiters, or numerical filtel
for shock capturing. Upwind compact schemes have also been proposed for calcule
compressible flows (see for instance [11, 20, 28]).

Here, we present an efficient compact time-dependent method for solving the ste
compressible Euler and Navier—Stokes equations with high accuracy. In this method,
process for getting high accuracy as well as the construction of the numerical dissipa
relies strongly on the residual vanishing at steady state. Starting from a basic cent:
scheme, the idea of increasing the accuracy order is not to cancel the leading tern
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the truncation error, but to add a new error term so that the resulting truncation erro
expressed in terms of derivatives of the residual only. This does not lead to a correctior
each derivative in the governing equations but to a compact approximation that cannc
derived by Pade formulae and requires no linear algebra. Similarly, the numerical dissipa
is residual-based and is consistent with an operator vanishing at steady state.

For simplicity and robustness, we use a first-order dissipation operator, which is comj
ible with any accuracy order. More precisely, by applying this operator, a centered sche
accurate at order2becomes a dissipative scheme accurate at orgler 2 (dissipation at
steady state comes from the truncation error of the dissipation operator). This paper stt
the casep = 2. The stencil of the dissipative scheme is then composedxo8 Points for
the 2-D Euler equations an@ x 3) + 4 = 13 points for the 2-D Navier—Stokes equations.

For constructing the dissipation operator, we follow along the lines of some of ©
previous studies on second-order-accurate schemes of the Lax—Wendroff type [18, 19
and recent attempts to improve them by introducing a so-called characteristic time-
matrix [7, 14, 15]. In this work, we present a rational construction of numerical dissipati
not derived from a modification of the Lax—Wendroff approach. This viewpoint brings
better understanding of the dissipation operator and allows its application to high-accur
schemes. It should be noted that the dissipation operator is parameter free and the
add no limiters or any other correction. In addition, the dissipation operator (and thus
numerical solution) is independent of the time step used to reach the steady state.

The paper is organized as follows. Section 2 presents the design principles of the sch
for a two-dimensional hyperbolic system of conservation laws. Section 3 describes
complete determination of the dissipation operator for the two-dimensional case. Sectit
presents the fully discrete form of the scheme and its stability domain. Section 5 exte
the method to the compressible Navier—Stokes equations with a real third-order accut
Section 6 briefly presents the main features of an implicit version of the scheme. Sectic
describes precise validations of the accuracy order and the efficiency for four model
cases: a 2-D circular advection problem, a 1-D boundary layer model, a 2-D Poiseul
type problem and a 1-D invisciduBgers model. Section 8 presents first applications t
the 2-D compressible Navier—Stokes equations: a laminar flow over a NACA0012 airfoil
shock/laminar boundary layer interaction on a flat plate; and a turbulent transonic flow c
a RAE2822 airfoil. These applications show the high accuracy and shock-capturing prop
of the third-order scheme. Finally, some conclusions are drawn and possible extensior
the method are discussed.

2. DESIGN PRINCIPLES

2.1. Residual-Based Compactness

Consider an initial-value problem for the hyperbolic system of conservation laws,
wt + fx+gy=0a (1)

wheret is the time,x andy are space coordinates,= w(X, Y, t) is the state vector, and
f = f(w) andg = g(w) are flux components depending smoothlywnThe Jacobian
matrices of the fluxes are

df dg
A= — d B=—".
dw an dw
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Suppose that system (1) is discretized by a conservative scheme of the simple form

1 n+1 n &n
—(w —w) +7f"=0, 2
L ) 2)
wherew" is the numerical solution at time levelAt, andf™ denotes some centered differ-
ence approximation to the steady state residual

r=fx+ Oy- (3)

Let v; x be a mesh function defined on a uniform Cartesian nggsh= j 6x, yx = kéy),
with stepssx andsy of the same order, say(h). Consider the basic difference and average
operators:

(31v)j 11k = Vj+1k — Vjk (820) ] k1 = Vjkt1 — Vjk
1 1
(Mlv)j+%,k = E(Uj+1,k + vj k) (sz)j,k+2 = E(Uj,k-s-l + vj k).
For smooth solutions, the simplest centered discretizatioriof

1
o= —

S f + 1 8 4)
X 1M1 5y 2129,

where the subscriptp k are omitted for concision. For an exact steady solutios: (),
the truncation error of (4) reads

G sy?
€0 = — fxux +

6 ?gyyy‘F O(h4)

The second-order approximation (4) can be improved by correcting the leading error te
Classically, this can be achieved either in compact or noncompact formulation.

Noncompact fourth-order approximation (NC)Here, the second-order error term is
corrected explicitly as

F —15 | 182f+18 | 152 (5)
NC—BX 1M1 61 5y 212 62 g,

wherel is the identity operator. This formula involves five points per directionrFer0,
the truncation error of (5) is

1
ENC = _%(5)(4 Fxxxx + 8y4gyyyyy) + O(h6)~

Pade—compact fourth-order approximation (PCHere, the second-order term is cor-
rected implicitly using Pade fractions,

Sap42
| + §83

d1p1

VPadef — ,
! | + 182

V;’adeg —
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that are computed via the numerical solution of linear algebraic systems. The residus
approximated by

1 1
Fom — _VPadef _VPad )
=g Vim T+ By 2 Y (6)

It involves three points per direction. Fore= 0, the truncation error of (6) is

1
epc = — = (8X* Foooxx+ 8Y*Gyyyyy) + O(h®).
180
As is well known, the numerical constant in the leading term of the truncation error
smaller with this Pade-type scheme than with the noncompact fourth-order approximat

Residual-based compact approximation (RBG)e now introduce a compact discretiza-
tion of r that does not require the solution of a linear system. The idea is no longer to cort
the truncation error of (4), but to add a new error term in each difference formula so t
the leading error term on is expressed in terms of derivativesrobnly. Namely,r is
discretized by summing two centered differences, each of second-order accuracy:

~ 1 1, 1 1,
freC = &51,%(' + 682> f+ 53%2(' + 531> g. (7)

Forr = 0, the truncation error of (7) is

5x? 8y 8y2 5x?
€RBC = 5 frxx + % fxyy + %gyyy‘l‘ ?gxnyr O(h%
5x2 sy?
= Stk oty + O(hY) = O(h®).

Expanding the truncation error up to order 6 gives

sx* Sx28y? sy* sx* sy*
€RBC = rzorxxxx'F Trxxyy"' rzoryyyy'F r&)gxxxxy+ rs()fxyyyy'F O(h6)
1
= 178()(5X4gxxxxy+ 8y4 fxyyyy) + O(h6)~

Sincer = 0, this truncation error can also be written as

1
€RBC = —@(5)(4 Foxxxx+ 5y4gyyyyy) + O(h®),

and we note that the numerical constant is the sameasgin

Fourth-order accuracy is obtained with RBC using 3 points only anco linear al-
gebraic systemCompared to NC, the RBC formula (7) uses the near pdgintsl, k + 1
(corner points) instead of the more distant poipts 2, k and j, k = 2. This stencil nar-
rowing has several advantages:

(1) unconditionally stable implicit versions can be easily derived—see Section 6;
(2) the numerical treatment of boundary conditions is straightforward,;

(3) the truncation error constant is divided by 6;

(4) accurate extension to irregular meshes is easier on a compact stencil.
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Note that an approximation similar to (7) can be found in a paper by Abarbanel and Kur
[1].

Higher-order. RBC approximation can be defined at any order of accuracy. For instanc
the formula

ro = L 1o 1 1 1, 1
FRac = &51M1(| + 685 - ﬁfg) f+ ESZMZ(I + éaf - @511)9

is sixth-order accurate at steady state (see the truncation error of the fourth-order F
approximation). It uses & 5 points only and no linear algebraic system.

2.2. Residual-Based Dissipation

Of course the present high-accuracy schemes cannot be used without some nume
dissipation. With the present Euler explicit time discretization, they would even be unstat
There are two classical (and equivalent) ways to introduce dissipation:

o find an upwind expression of high accuracy ffor
e add a dissipative term of high order to the scheme.

Here, we follow a different approach and add a dissipative term of order 1 that vanishe
steady state.
More precisely, we now consider

1 o
L S (®)

whereP" is a centered difference approximation to a partial differential opefatsuch
that:

e P brings “parabolicity” or “dissipation” (see Section 3)
e P = O¢(h), for robustness in the transient phase

e P vanishes at steady state££ 0 = P = 0)
e Pisindependent oft.

A simple choice ofP satisfying these criteria is

) ) ) )
P= (@1 + S (@ar)y = T{@ah+ G+ D@a(ft gl ()

where®; and®, are matricial coefficients depending only on the space increments and
the flux Jacobian matrices

@1 = d1(A, B; 8x, 8y) = O(1)

Dy = Oy(A, B; 8%, 8y) = O(D).
Functions®, and®, will be precisely defined in the next section.

Choosing a 3x 3-point stencil for scheme (8), we define the discrete opefatisom
classical centered formulae of second-order accuracy and, far set

1 0 1 0
g | + =82 ) f + =5 | + =82 10
r SX 1H1( +6 2) +5y ZMZ( +6 1)9 ( )
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to include the simply centered approximation (4)—fce 0—and the RBC approximation
(7)—for6 = 1.
For an exact steady solutign; = r = 0), the truncation error of scheme (8) is

Sx? Sy? o —1 SX 8
€= "t %Fyy-i- o G+ 8y )y — 5 (BaD)x - %’(cbzr)y +o(hd).

Thuse is O(h?) for § # 1 andO(h®) for # = 1. Consequently, the dissipative scheme cat
be third-order accurate at steady state onxa3point stencil.

Remark.

(a) The Lax—Wendroff scheme includes an operator simild? taut dependent ort
and not so efficient as the one constructed in Section 3.

(b) The exact operatdpP is not dissipative at steady state<£ 0 = P = 0). However
numerical dissipation exists at steady state and comes from the truncation éPrashith
is O(h®) and involves fourth derivatives (see Section 4).

(c) Clearly, by choosing a & 5-point stencil, using fof a sixth-order approximation
and improving similarly the approximation fd?, we can reach fifth-order accuracy at
steady state. In fact, the use of the present kind of dissipation does not bound the ord
accuracy at steady state.

3. CHOOSING ®; AND &,

3.1. Method

The question now is to determine functiohg and®, ensuring the stability of the time-
dependent scheme (8). During the unsteady evolution, this scheme is first-order accu
More precisely, it approximates

wi + %wn + O(At?) + fy + gy + O(h®) = P + O(h?), (11)
whereP = O(h). Assuming thaiAt = O(h), this gives
we + fx + gy = O(h).
By derivating with respect to time,

wit = —(fix + Gy) + O(h) = —(Awp)x — (Bwy)y + O(h)
= [A(fx + gylx + [B(fx + gy)ly + O(h). (12)

By substituting (12) into (11) and using the expression (9)Fowve find that scheme (8)
is a second-order approximation to

with

1 1
P = E[Cl( fx +9y)lx + E[CZ(fX +ay)ly

1 1
= E(Clwa + C1Bwy)x + E(Czwa + CoBwy)y,
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where
Ci=68xd; — AtA, Co= (Syq)z — AtB.

A necessary condition for the stability of scheme (8) is that the differential opePatms
dissipative.

3.2. Single Conservation Law

Suppose that Eqg. (1) is a single conservation law, we.f, g, A, B, ®;, and®,, are
scalar-valued functions, and consider the quadratic fQ¥nassociated with the operator
P,

1 1
Q = é[clA.f;2 + (C1B + C2A)En + C,Bp?] = éxT M’X,
with

C]_A %(ClB—i-CzA)
1(C1B + CoA) C.B

SHIES
n
Dissipativity (in a broad sense) & means that the quadratic for@’ is nonnegative
definite, i.e., the eigenvalues of the symmetric mawix are positive or null, which is
equivalent to

{ClB =CA
C,A>0, C,B=>0.

This can also be written as

XDy _ Syds,
A B

SXDP1A > AtA%, Syd,B > AtB2 (15)

(14)

Since (15) shows thab; is of the sign ofA and that®, is of the sign ofB, we introduce
the notations

®; =sgnAP, >0

®, =sgnB)¥, ¥ >0

and
5X|B
o = XIBl (16)
Syl Al
With these notations, the conditions (14)—(15) become:
VU =qd, a7)

At At
—I|Al <P, —I[Bl<W. (18)
SX sy
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o=0 o= oo
AN
N
o<l o>1
o=1 o=1
/
Sy
T
/7
o>1 o<l

FIG. 1. Parametex = ‘gi—}i} representing the local advection orientation.

Note that the parameter characterizes the local advection direction with respect to th
mesh. Forr < 1, that is% > %, the advection direction is between tkalirection and a
mesh diagonal (see Fig. 1). Fer= 1, the advection is along a mesh diagonal. &or 1,
the advection direction is between thalirection and a mesh diagonal. Note also that, du
to (17) and% = a2l the two inequalities (18) are equivalent.

Expressed with the functions and W, the dissipation operator reads as follows:

8 )
P= %[@Dsgr(A)(fx +0y)lx + %[\Ifsgr(B)(fx + gy)ly- (19)

Consider now two choices of the paib, W) that are compatible with (17)—(18) and lead
to the simplest expression &f. They are as follows:

@ e=1V¥=a.

Due to (18), the time step is bounded @&|A| < 1. Unfortunately, for large values of
a (quasi-vertical advection), expression (19) shows that the dissipation ¥divection
becomes very high, i.e., the scheme becomes highly dissipative in the advection direci
which is unacceptable.
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(b) ® = 1/a, ¥ = 1.

The time step is bounded b%|B| < 1. Now, for small values of (quasi-horizontal
advection), the dissipation in tixedirection becomes very high, which is also unacceptable
Since the dissipation condition (17) prevents us from chooding W = 1, exceptin the
very special case whete= 1 (diagonal advection), we ke@andW as close as possible

to 1. More precisely, for eaal > 0, we look for® > 0 minimizing the distance

| — 1)+ W -1 = [® — 1] + Jad — 1].

The optimal solution is found to be

1 fa<l
®={7 .
5 if a>1

and

a fa<l
‘I’:“q’:{l if o > 1.

These functions are plotted in Fig. 2. They can also be written as

® = min 1,1 = min l,%AI
o 5X|B|

5x|B
¥ =min(l, @) = min(l, XI |) .
SylA|

(20)

For the aboved and W functions, condition (18) is equivalent to

At At
—IAl<1 and —|B| <1,
5X sy

FIG. 2. Coefficientsd andW¥ versus advection orientation.
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that is,

At < min( A 1Bl
<min{ —, — ).
8X 8y

Remember that this is only a necessary condition for stability. The true stability domain
the scheme will be given in Section 4.

3.3. System of Conservation Laws

For an easy implementation of scheme (8) applied to the general system (1), the mati
@, and®d, are constructed through a direct extension of Section 3.2: the eigenvectors of
are those of\; the eigenvectors @b, are those oB; and their eigenvalues are deduced from
the scalar definitions ob; and ®,. More precisely, leflo (respectivelyTg) be a matrix
whose column vectors are the right eigenvectors of the Jacobian mfafriespectively
B) and leta® (respectivelyb’) be the eigenvalues ok (respectivelyB). Owing to the
hyperbolicity of (1),ai’ andb( are real, and@a andTg are regular, so that

A= TaDiag[a”]Ts%, B = TgDiag[b”]Ts",

whereDiag[d’] denotes a diagonal matrix with diagonal entris.
The matricesb; and®,, are defined by

®; = TaDiag[¢}'|TAt, @, = TeDiag[¢s'] T, (21)
with
o1 =sgra)p. g3’ = sgrb)y® (22)
, ) syla®| i . 8x |b®]
i _ i) _ A
o= m'n(l’ xm® ) VM A ) 23)

wherem(A) = min; (Ja®’|) andm(B) = min; (|b®)).

4. FULLY DISCRETE SCHEME FOR THE EULER EQUATIONS

On a uniform Cartesian mesh, the proposed scheme is of the form (8) visegiven
by (7) andP is a centered difference approximation to the dissipative terdefined by
(9) with @, and®; given by (21)—(23).

To ensure linear stability and dissipation for the fully discrete scheme, it is importe
to discretizeP properly. Replacing all the first derivatives in (9) by classical centere
differences would lead to instability (and also to an overly large scheme stencil). As
the Lax—Wendroff method, it is necessary to use different centered expressions for
“external” and “internal” first derivatives in (9). Moreover, multidimensional dissipatiol
in the sense of Kreiss cannot be achieved by using a rotated Richtmyer (cf. [2]) or a
[23] type discretization ofP—which comes to define a predictor step at locatigpn-
1)8x, (k+ 3)8y. This is why we use a special approximationRdnvolving a predictor
step for each space direction, the stability and dissipation of which were proved in [19]
the Lax—Wendroff method in any number of space dimensions.
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To be more specific, the dissipative term is discretized as

5 1 5 f 82129 1 Sime 820
P= 251[q’1( S + u1 5y + 252 Do | uo o + sy )| (24)

where®, at cell interfacej + % k is computed from (21)—(23) by replacirgand B by
their Roe averagegAr);+1/2 k and (Br)j k+1/2 [27] and similarly computingb, at cell
interfacej, k + 3.

It is convenient to express the full scheme in several stages. First a predictdrthe
cell interfacej + % k and a predictoi1, at the cell interfacq, k + % are defined. They
represent the terms in the brackets of (24). Then, the numerical fluxes are obtained fron
expression (7) of and the predictors. Finally, the new cell values at the cell centers can
deduced as

(a) predictors

8X "
(M), sy = <31f + 52#1#29)
J+

3y K

(NI

25
My = (Yot +629) “
(M2)7 3 = ( 55 0manat + 820 et
’ 2
(b) numerical fluxes
9 1 :
() =1+ —85 s f — S0y
i+3. 6 2 i1k
: (26)
h n 0 2 "
( 2)1,k+% = (I +681 129 — - P2l ] "
’ 2
and
(c) new cell-values
Sth  82h2\"
whl =wh, — At (— + == (27)
1.k Ik 85X 8y /i«

where a parametérhas been introduced for future reference.

The above 3« 3-point scheme is first-order accurate for an unsteady problem. At stea
state, it is third-order accurate fér= 1 and second-order accurate otherwise.der 0,
i is approximated by the classical centered difference (4) and one recovers the sch
proposed in [15] from a modification of the Lax—Wendroff scheme.

Note also that for a 1-D problem in thedirection, we getb; = sgn(Ag) and®, = 0,
so that the numerical flux reduces to

1
hy=pif — ESgr(AR)Sl f,

which corresponds to the classical Roe scheme [27]. At steady state, the formal orde
accuracy of this 1-D scheme is infinite.
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The L,-stability of the scheme (25)—(27) can be studied for the linear flixesAw,
g = Bw, where A and B are scalar constants. In this case, the amplification factor of t
scheme reads

wherei? = —1 and
. . 1 . .
R = ®;A(1 - cost) + ,B(1 — cosy) + §(<I>1B + ®,A) siné sing
. 0 . . 0 .
S=A1- §(1— cosn)| siné + B|1 — 5(1— cosé) | sinn,

with

A= gA, g At B,
8X sy
and¢, n are the reduced wave numbers in thandy directions.
The stability domain of the scheme, that is the domain in wh@h< 1 in terms of
A and B, is shown in Figs. 3a and 3b fér= 0 (second-order) anél = 1 (third-order),
respectively. Note that the stability domain is larger for the third-order version than for t
second-order one.

5. FULLY DISCRETE SCHEME FOR THE NAVIER-STOKES EQUATIONS

The Navier—Stokes equations can be written in the form
we+ (FE = )5+ (@F —g¥)y =0, (28)

wherefE = fE(w) andgf = g&(w) stand for the Euler fluxes, arfd’ = fV(w, wy, wy)
andg" = g¥(w, wy, wy) stand for the viscous fluxes.
System (28) is discretized in the same way as system (1), that is,

1 .
Kt(ww —wM 4" = P", (29)

wheref" denotes a centered approximation to the steady-state residual
r=(ff— )+ @ —g")y. (30)

and P" is a centered approximation to

8X )
P = (@10 + Ey(cbzr)y. (31)

Only the definition of has changed. Note that since the operBtapw contains third-order
derivatives, it is no longer purely dissipative.

To simplify the presentation of the fully discrete scheme, we now assume that the visc
fluxes read

fV=1vDuy, + v(z) , gv =v®u, + v(4) (32)
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CFL,=BAt/3y

o STABLE

CFL=AAt/5x

FIG.3. Advection case. (a) Stability domain of the residual-based second-order s¢hen®® ((b) Stability
domain of the residual-based third-order schetne: (1).

wherev®, v®@ 13 andv® are constant viscosity coefficients ensuring physical dissipz

tion, i.e.,

2
v® >0, V@ >0, (V@ 41®)% <2)D@,

The only work left to do is to revise our compact approximation on the left-hand side
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(29) to include the second derivative. Here, the discrete residstzuld be

1 1 8 8 1 83
F= —31K| + —5§)<M1fE - V(l)(sl—)l(u> v 2 —v(l)l—w}

85X 6 3y 12 8X

1 1 Sow Siw 1 83w

5l 1+ =82 E_,®227 ) _,,3 27 S22 (33
"oy ZK MG 1)(“29 Yy ) TV Rk T sy | 39)

A Taylor expansion of (33) gives
F=r+1t+71+ Oh?,
wherer is the exact residual,
r=1fx+ogy= (fE — Dy, — v(z)wy)x + (gE — v, — V(4)U)y)y;

7e IS the leading term of the truncation error for the classical centered approximation to

5x? 5x? 8x? 8y?
te =~ fiox = T3 (VW) = 5 (0 0y) 0 = 5 (0 0y) 0y
8y2 8y2 y2 8X2
+ ?ggyy T 12 (”(4)’“3’) VWY 6 (V(S)wx) yyy 6 (v(g)wx)xxy’

andr, is the contribution of the second-order teratgledto the classical centered formulae
in (33) in order to produce derivatives 10fn the total discretization error,

8 e« X2 4 X e 8Y? | &
Ta = ?(f — )wx)xyy_ E(l}( )wx)xxx+ ?(g — v )wy)xxy_ E(v( )wy)yyy’
Clearly,
5x2 5x2
Te+ Ta = ?(fE — v(l)wx — V(Z)U)y)xxx + ?(gE — 1)(3)“))( - U(4)U)y)xxy
3y <& 1 2 3y & 3 4
+ ?(f — Dy — 1l )wy)xyy+ ?(g — @ — e )wy)yyy
5x2 sy?
e T e
so that one finally gets
. 5x? sy?
Fr 4 ot %ryy + o(h, (34)

exactly as in Section 2.
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Thus, the fully discrete scheme reads as follows:

(a) predictors:

S1w Sow
(Hl)?_’_%,k = [51<fE — v(l),ulli _ V(Z)MZZ)

8X 3y
8X S1w Sow\1"
275 E_,®, % _ @&, 6 2"
+8y 2(#1#29 Vi s TV 5y )
' (35)
‘Sy 31w 82u)
n —|Y E_,0», 22" _ @, 2%
(M2) 1 = [8X51<M1M2f L i A 8y)
8111) 4 3211) n
+52<9E — vy —— = )Mzﬂ ;
dX 8Y JJjked
(b) numerical fluxes:
0 81w
n _ 2 E_,0
(h1)1+%k_ |:(I +682><M1f —V y)
@ Sow 0 (Dwa 1CI> I :
—v ez _ 2,7 =
M2 3y 12 5xX 2 1113 K
i (36)
o'y = (1 262 ) pag® — v 22
2 j,k+% = 6 1)\ #29 CSy
Siw 0 48w 1 :
—vOurpy— — —v@2— <I>2H2] ;
sx 12 sy 2 okt L
(c) new cell values:
sthy  8hp)\"
w?j(l =wjy — At<5 + o) (37)
X Y /ik

Atsteady state, the above scheme is third-order accuratefat and second-order accurate
otherwise. Fop = 0, we recover the second-order scheme proposed in [7].

Remark.

(a) The second- and third-order schemes share the 6am8) + 4 = 13 point stencil.
This stencil is sufficient to approximate the corrective terms specific to the third-orc
scheme for the Navier—Stokes equations.

(b) For viscous flow problems, the functiods and ®, could take into account the
physical viscosity in order to reduce the numerical dissipation in viscous layers. In t
present work however, we retain for viscous applications the function, defined for
the Euler equations: this choice has no effect on the order of accuracy.

The stability domain of scheme (35)—(37) is displayed in Figs. 4a and 4b, for a choice
fluxes corresponding to amodel boundary layer problef:= Aw,gf =0, fV = 0,9V =
vwy. Note that the present explicit scheme of third-order accuracy has a large stability
main.
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FIG. 4. Advection-diffusion case. (a) Stability domain of the residual-based second-order s¢hent®.(
(b) Stability domain of the residual-based third-order scheime ().

6. IMPLICIT VERSION OF THE SCHEME

The efficiency of steady-state calculations may be increased by adding a suitable imp
stage to the previously presented scheme. In this section, we shortly present the imy
version of the scheme. Let us first consider the case of the Euler equations. Apply
the Euler backward time-discretization to the explicit scheme (25)—(27), linearizing t
numerical fluxes taken at time1 + 1)At, and simplifying the resulting linear implicit
operator to retain only derivatives in thxeandy directions that can be discretized on a
three-point stencil (implicit mixed second-order derivatives coming from the dissipati
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term are dropped for both the second- and third-order schemes and so are the imy
mixed third-order derivatives specific to the third-order scheme) yields an implicit stage
the Harten type [12] (withb|A|, ¥|B| in the second-order terms instead|éf, |B| for
classical Roe-type schemes),

At ) 1 ]
Awj k + x n1(AS1AW") | k — 551(@|Al51Aw )i,k

At 1
T3y [Mz(BszAwn) -k~ 582(|Bl82Aw") ,—,k] = Awf, (38)

where Aw!, = w* — w",, and Aw} is the similar time increment given by the ex-
plicit stage. From now on, we will refer to the second- (respectively third) order scher
as scheme (38) with = 0 (respectivelyy = 1) in the explicit stage (25)—(27); strictly
speaking, second- or third-order accuracy is reached only at steady state.

The implicit scheme (38) is linearly stable for= 0 andd = 1 and offers good damping
properties when used with large CFL numbers. The amplification factor of the scheme
displayedin Figs. 5a and 5b in the case of amodel advection problesmawy + bwy = 0,
with a andb fixed at constant values. The second-order scheme leads to better dam

5 lG(g,¢,) | "

| G(&,,8,) |

FIG.5. Isovalues of the amplification factor of scheme (38) in the reduced wave-numbers plane. 2-D advec
problem:aAt/sx = bAt/§y = 100. (a) Second-order schente=£ 0). (b) Third-order schemé (= 1).
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than the third-order scheme, which was expected since the third-order explicit stage conf
third derivatives which were not made implicit in order to keep the scheme simple. Howe\
thanks to the method’s compactness, the simplifications performed on the implicit stage
not significantly degrade the efficiency of the scheme, which would not be the case
third-order MUSCL-type explicit stage were coupled with the implicit stage retained
(38) (see [26] for instance). For practical applications, it is usually not possible to direc
solve the implicit stage (38) due to CPU cost and memory storage issues, and approxil
solution techniques such as alternate-line relaxation of the Jacobi or Gauss-Seidel
are typically used instead. Tools to analyze the stability and efficiency of relaxed impli
schemes were presented in [6]. For a 2-D model advection problem, it can be shown, u
these tools, that scheme (38) is linearly unconditionally stable when its implicit stage
solved using an alternate-line Gauss—Seidel relaxation; moreover, only a few inner iterat
of the relaxation process (typically one or two) are required to ensure a damping very cl
to that of the direct solver.

In the case of the Navier—Stokes equations, an implicit stage is built from the expl
scheme (35)—(37) following the same lines as in the Euler case: only derivativexiaride
y directions that can be approached using three-point formulae are retained in the img
stage in order to keep it simple. This choice leads to the following implicit scheme:

At 1 AY
Awj = AS1 AWM — 8 ZOIA + — |5 Aw"
wj k + 5 H1(ASLAW"); k 1((2 |Al + 8x) 1Aw )j!k
+£ w2(BS2Aw™) k—Sz((}\I’|B|+ B—V>62Aw”> = Aw™P (39)
sy I 2 sy ik Ik

with AY = af VY (w, wy, wy)/dwy, BY = agV (w, wy, wy)/dwy.

The implicit scheme (39) is linearly stable fer= 0 and® = 1. The efficiency of the
scheme was studied for a 2-D linear advection—diffusion problemn; awy = vwyy, with
the following choice of numerical parametersx = Ay = h, aTAt = CFLmin (1, R&),
L8l = CFLmin(3, %), where Rg = 2" denotes the cell Reynolds number. It was ob-
served that the second-order scheme offers a better damping than the third-order sct
which was expected since a greater number of simplifications was performed on this I
when building the implicit stage. However, in spite of these numerous simplifications, 1
third-order scheme offers a reasonably good damping at large time steps as soon a
cell Reynolds number is not too small, which is indeed the case for large regions of flc
in practical problems (see Figs. 6a—6d). The analysis of a relaxed version of the impl
stage (39) led to the same conclusion as in the Euler case: a single iteration of an altel
Gauss—Seidel relaxation technique is sufficient to provide an efficiency very close to the
a direct solution of (39). This relaxation technique will be applied for all the computatiol
presented in the following sections.

7. VALIDATIONS FOR MODEL PROBLEMS

The theoretical properties of the residual-based scheme are studied in this section thr
the calculation of several model problems, the exact steady solutions of which are knc
allowing the computation of the actual accuracy orders and a detailed assessment o
extra precision provided by the third-order method.
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FIG. 6. Isovalues of the amplification factor of scheme (39) in the reduced wave-numbers plane.
D advection—diffusion problem. (afFL = 100, Rg = 0.5. Second-order schemé £ 0). (b) CFL = 100,
Re, = 0.5. Third-order scheme (= 1). (c)CFL = 100, Rg = 5. Second-order schemg £ 0). (d)CFL = 100,
Re, = 5. Third-order scheme (= 1).

7.1. Rotational Advection

We consider the linear advection with rotation around the pgigt (1, y = 0) ofasmooth
Gaussian profile over the square domain[ox [0, 1], similar to [24]. More precisely, we
look for the steady solution of the following initial boundary-value problem:

4yl (1-x3E =0, 0<x<1 O<y<1;

w(X,y,0) =0, O<x<1 O0<y<l

w(x,0,t) = exp(—50(x — 3)%), 0<x<1, t>0 (40)
w(x,1,1) =0, 0<x<1l t>0

w(0,y,t) =0, 0O<y<1 t=>0.

On the boundary partx(= 1, 0< y < 1), no condition is required (outflow boundary).
Numerically, the boundary values are obtained from extrapolation of the interior valu
The exact steady solutiomis = conston any circle of centdtl, 0). The numerical solutions
obtained with the second-order scheme (defined by formulae (25)—(27), (38) wif) and

the third-order scheme (defined by the same formulaegnithl) using aJ = 81) x (K =

81) uniform Cartesian mesh are displayed in Fig. 7a, along with the exact steady soluti
The iso-lines of the numerical solution are nearly perfect circles and cannot be distinguis
from those of the exact solution. The numerical solution along the mesh diagenal— x
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FIG. 7. Rotational advection. (a) Isovalueswotx, y) on an 80x 80 grid. (b) Close-up of the distribution of
w(X, y) along the diagona} = 1 — x.

is also presented in Fig. 7b and allows us to observe the effective higher accuracy of
third-order method with respect to the second-order one. More precisely;-iierm errors
between the exact solution and the numerical solutions corresponding to various mesh
(Ax = gt = Ay = 1) are plotted in Fig. 8: the second-order accuracy ofthe0
scheme and the third-order accuracy of the 1 scheme are clearly demonstrated. The
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FIG. 8. Rotational advection. (a) Computed orders of accuracy. (b) Convergence and error history on
80 x 80 grid.

convergence history of the second- and third-order computations is monitored through
L,-norm ofi—’f on the computational domain and displayed in Figs. 8a and 8b. For bc
schemes, the implicit stage is solved using a single iteration of an alternate-line symme
Gauss-Seidel relaxation and a CFL number equal to 100 (larger CFL humbers can be
but an asymptotic behavior is reached), yielding fast convergence to steady state. Nov
important concernis the following: since the present schemes are higher order only at ste
state,what is the effect of stopping at some level of the residual on the actual accuracy
the solutior? This can be checked in Fig. 8. On the 880 grid, one observes that after

10 time iterations only, the residual is equal to-40while the actual error has already

converged to its steady state value, i.e., third-order accuracy is really achieved. Due to
error-convergence efficiency, the residual-based approach appears to be working conc
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7.2. 1-D Boundary-Layer Model

We now consider the following 1-D viscous flow model problem:

wy + awy = vwyyx, 0< X < L;

w(x,0) =0, O<x<lL;

(41)
w(0,t) =0, t>0;
w(L,t) =1, t>0.

The exact steady solution of (41) on a gfjdA X)o<j<J is given byw; = (1 — exp(jRey))/

(1 — exp(Re), where Re denotes the Reynolds number=ReL /v, and Re = asx/v =
Re/J denotes the cell Reynolds number. In the present computatioas], v = 0.1,
andL =1, so that Re= 10 and Rg = 10/J. The numerical solutions obtained with the
1-D second-order scheme (deduced from formulae (35)—(37), (39)awitl0) and the
third-order scheme (defined by the same formulae With 1) using a uniform grid of
20 cells (Re = 1/2) are presented in Fig. 9a, along with the above exact steady soluti
they approach closely. A closeup of these solutions (Fig. 9b) shows the higher precis
of the third-order scheme. The actual orders of accuracy of the schemes, based on se
computations using different grid refinements, are plotted in Fig. 10a: they are close to
theoretical second and third orders. The convergence and error history of the schem
displayed in Fig. 10b: third-order accuracy for this viscous problem is obtained after ve
few iterations, prior to full convergence of the residual to machine accuracy steady stal

7.3. 2-D Poiseuille Flow Model

We are now looking for an approximate steady solution of the following problem:

wy + awx = Vwyy, O<x<Ll, O<y<lL;

w(X,y,0 =1, O<x<L, O<y<lL; 42)
wX,0,t) =wX, L,t)=0, O<x<L, t>0;
w(0,y,t) = wo(y), O<y<lL, t=0.

At steady state, problem (42) may be viewed as modelling a Poiseuille flow: a profi
prescribed at inflowy = 0, is advected and diffused between two solid walls on which it
value is fixed to zero (see Fig. 11a). The inflow is chosen equabty) = sin(n%), o)
that the exact steady solution of (42) is givenibyx, y) = exp(—%i%)sin(n%), where
Re= al /v denotes the Reynolds number, equalto 10 in ouraasel,v = 0.1,L = 1).
The w-profiles along the outflow boundary= 1 given by scheme (35)—(37), (39) on a
uniform Cartesian mesh @fl = 20) x (K = 20) points are displayed in Fig. 11b along
with the above exact solution. Once again the excellent accuracy of the third-order schi
is observed. The actual orders of accuracy of the schemes are plotted in Fig. 12a: the
in very good agreement with the theoretical orders. The convergence and error histor
the schemes is displayed in Fig. 12b: the slower convergence of the third-order scheme
accordance with the amplification factor analysis in Section 6. Note that the slower de
of the residual only slightly affects the convergence on the error, which reaches a ste
state anyway after few iterations. Computations performed on the same grid with a sm:
diffusion coefficient, i.e., a larger cell Reynolds number, led to a much smaller differenc
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FIG.9. 1-D boundary-layer model. (a) Exact and numerical solutions on a grid of 20 cells. (b) Closeup of t

solutions.

of convergence rate between the second- and third-order schemes, as predicted in Sec
from the amplification factor study.

7.4. Inviscid Birgers Model

Here, we simply check the shock-capturing property of the scheme on the simple nonlir

problem:

wy + (w?/2)y =0, 0<x<1;
wxX,00=1-—-2x, 0=<x<1;
w(0,t) =1, t>0;
w(l,t) = -1, t > 0.

(43)

The exact steady solution of (43) is a shock betwgen 1 andw = —1. The numerical



A RESIDUAL-BASED COMPACT SCHEME 665

a i
25
: (20)
3F
S35F  slope=2.14 (40)
9 4f
S -
g -
o 45
5 N
o N
= sE
i slope = 2.89
55 (160)
[ ——&—— Second-order scheme (6=0)
6F —<&—— Third-order scheme (6 = 1)
F (320)
6.5 [ 1 L L ) ) 1 L L L ) 1 ) I
-2.5 -2 -1.5
Log(space step)
b or . =0
- residual ]
2F 0N _: 0.4
4F J-08
{\l\ [~ ]
ad 6 1 8
= - =1-1.24
=} B ] S
8 8 ] g
7] " .
e r ] 1'6%
5-10F 1 ¢
9 °r J2 -
12 1
: 24
AL ol N
E -2.8
-16 ORI RN SRR (SRR SR NN SN SN N R S ?
0 10 30 40 50

20
Iterations

FIG. 10. 1-D boundary-layer model. (a) Computed orders of accuracy. (b) Convergence and error history
a 20-point grid(CFL = 100).

solution obtained with the third-order RBC scheme usixg= 1/20is shownin Fig. 13: the

shock profile is spread on two mesh cells without oscillation. At GFL0O0, the residual

is 107© after 20 time iterations and it reaches machine-zero in about 40 time iterations.
The inviscid and viscous results obtained in this section for model problems validate

new design concept of the schemes presented in this paper: residual-based compactne

dissipation lead to efficient and high-accuracy methods for multidimensional inviscid &

viscous problems.

8. APPLICATIONS TO VISCOUS COMPRESSIBLE FLOW PROBLEMS

In this section, some viscous flow computations performed with the proposed resid
based scheme are presented. For these first applications, the extension of the sche
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boundary.

curvilinear meshes was realized in a straightforward finite-volume formulation that dc
not necessarily guarantee a true second- or third-order accuracy on nonregular meshe
are not able to compute the real order of accuracy anyway-since the exact solutions
here unknown. The present analysis aims rather at assessing the ability of the third-o
schemed = 1) to provide accurate solutions for realistic applications and whether to u
it instead of the second-order scherfieX{ 0) which has already been successfully appliec
to the computation of viscous flows over airfoils and wings in previous studies [5, 7].
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8.1. Separated Laminar Flow over a NACA0012 Airfoil

The laminar flow atM,, = 0.5 and Re= 5000 over a thermally insulated NACA0012
airfoil at zero incidence is computed using a series of C meshes containing the same nul
of points (150x 64)—only the upper part of the airfoil is considered owing to the symmetr
of the problem—Dbut with different mesh spacing at the wall, varying fromf Ihord for
the finest mesh up to 18 chord for the coarsest mesh. For this problem, the main flo
feature is a separation region occurring near the airfoil trailing edge (see the Mach cont
displayed in Fig. 14, where the recirculation bubble appears as a region of low Mach nurr
flow). We first checked that the results provided by the residual-based schemes comp
well with other published results. The pressure and viscous drag coefficients as well as



668 LERAT AND CORRE

o o
) o ~
[9;] (9, « -

w(x)

o
o

S S

g o

[9,] [9;]
o||||||||||||||||||||\||||\||||\|||I||||

| - R | oo o b o a g a

0.25 0.5 075
X

.
-y

FIG. 13. 1-D Birgers problem. Typical numerical shock structure.

location of the separation point computed using the third-order scheme on the finest
are indeed close to the values obtained in [8, 22] on grids with similar refinement at |
wall (see Table I). Note also that on this finest mesh the second- and third-order sche
yield almost the same results so that using the third-order scheme does not seem espe
attractive.

FIG. 14. Laminar flow over a NACA0012 airfoil. Third-order computation on finest mesh. (a) Mach contour:
(b) Pressure contours.
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TABLE |
Viscous and Inviscid Drag Coefficients and Separation Location
(Chord %) for NACA0012 Airfoil 2

Method CDy CDh, Xs
Present 2nd-order scheme 0.03235 0.02271 80.3
Present 3rd-order scheme 0.03230 0.02277 80.7

[8] 0.0325 0.0226 81.9
[22] 0.0332 0.0229 81.4

a(M = 0.5, Re= 5000,a = 0 deg).

However, let us now investigate the effect of grid coarsening on the second- and th
order numerical solutions. All the computations were performed using a relaxed versiol
the implicit schemes an@FL = 100, which provided a fast convergence to steady state |
all cases, except for the second-order scheme on the coarsest grid, which did not con
properly because of a lack of spatial resolution in the separation region; decreasing the
number did not allow the second-order scheme to converge on this grid, for which the m
size at the wall leads to less than 10 points in the boundary layer. On the same grid,
third-order scheme reached a machine accuracy steady state in 150 iterations. It is |
from Figs. 15a and 15b that the third-order scheme is much less sensitive to grid coarse
than the second-order scheme: the shift on the viscous drag prediction when multiply
the mesh size at the wall by 75 (both schemes reach steady state for a mesh size at the
between 1x 10~*c (or below) and % x 10~3c) is about 125% for the third-order scheme
and 25% for the second-order scheme; the shift on the inviscid drag does not exceec
for the third-order scheme while it is about 30% for the second-order scheme. The |
sensitivity of the third-order scheme to grid coarsening is also depicted in Figs. 16a and
where the computed skin-friction is plotted for different grid sizes. The coarsening ter
to lower the skin-friction peak located near the leading edge for both schemes but wit
slower decrease for the third-order scheme. More importantly, the coarsening has or
weak influence on the third-order prediction outside the leading-edge region: the separe
point, identified as the point where skin-friction becomes zero, shifts only slightly, even
very coarse grids. Meanwhile, the second-order prediction is much more affected by
coarsening on the whole airfoil length and eventually fails to converge.

8.2. 2-D Shock/Boundary Layer Interaction

In order to assess the robustness of the residual-based scheme, the interaction
oblique shock wave with a laminar boundary layer is computed. The test-case consid
has been experimentally and numerically studied by Degteal. [9], and numerical
simulations were performed by other authors [16]. The freestream Mach numheér is :
the Reynolds number based on the distaKgg between the plate leading edge and the
shock impingement point is.8645x 10% the shock angle with respect to the horizontal
is —30.027 (see [9] for more details). The computational grid is the one used in [16
it contains 74 points uniformly distributed in the streamwise direction, betweenr-0.18
andx = 2.01 (the plate leading edge is locatedxat 0), and 62 points in the direction
normal to the plate, with a mesh size at the wall abaitx110~. The CFL number is
equal to 10.
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FIG. 15. Laminar flow over a NACA0012 airfoil. (a) Effect of mesh coarsening on the computed pressu
drag. (b) Effect of mesh coarsening on the computed skin-friction drag.

The separation and reattachment location of the boundary layer may be identified on
computed skin-friction distribution (see Fig. 17a) as those points wherehanges sign.
Their computed values agree reasonably well with the experiment and compare favour
with the values obtained in [16] using a third-order-biased upwind total variation diminishir
(TVD) scheme on the same Cartesian mesh (see Table Il). The pressure distributions a
the plate are displayed in Fig. 17b: to allow a comparison with [9] the pressures have b
normalized by the minimum pressupgjust upstream of the interaction. The computations
compare well with the experiment but the predicted pressure gradient at reattachment i
steep with respect to this experiment. However, the third-order distribution more clos
approaches the distribution measured in [9].
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distribution. (a) Second-order scheme. (b) Third-order scheme.

8.3. Turbulent Transonic Flow over a RAE 2822 Airfoil

The last problem considered is the turbulent flow over a RAE2822 airfoil, Case 9 of Cc
et al. [4], assumed to correspond to Re6.5 x 10°, My, = 0.734, anda = 2.54 deg,
following the wind tunnel corrections suggested in [10]. The two-layer algebraic ed

TABLE II
Separation and Reattachment in Shock/Boundary Layer Interaction

Separation(X/Xsn) ReattachmentX/Xsp)
Present 2nd-order scheme 0.78 1.22
Present 3rd-order scheme 0.76 1.22
[16] 0.745 1.39
Computation [9] 0.79 1.24

Experiment [9] 0.78 1.28
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bution along the plate.

viscosity model of Baldwin—Lomax is used. The computational C-mesh corngiis 64)
points, with 260 points on the airfoil; the far-field is located at 10 chord lengths from tt
airfoil and the first mesh interval normal to the body is abowt B0-¢ chord length. The
CFL number is equal to 20. A comparison of the results with the experiment is shown
Fig. 18: there is close agreement with the experiment on the pressure coefficient, anc
computed pressure distribution compares well with the results presented by contribu
to the EUROVAL project [10]; in particular, the residual-based schemes provide a go
shock resolution without requiring any tuning parameter. Though not shown here for sp
reasons, the skin-friction distribution and velocity profiles at different locations along tl
airfoil are also in good agreement with both the experimental values given in [4] and 1
numerical results obtained in [10]. Note that, for this test case, we did not see any notice:
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FIG. 18. Turbulent flow over a RAE2822 airfoil. (a) Wall-pressure distribution. (b) Third-order scheme Mac
contours.

difference between the second- and third-order results. Possibly, in such a calculatic
rigorous implementation of the residual-based correction on a curvilinear mesh would
of interest.

9. CONCLUSION

A robust and efficient compact method for solving the steady compressible Euler
Navier—Stokes equations with high accuracy has been presented. Compactness anc
accuracy are obtained by expressing the truncation error in terms of derivatives of
residual, vanishing at steady state. Robustness and good shock-capturing propertie
achieved thanks to a first-order dissipation, also based on the residual, that becorr
high-order term at steady state only. Compactness and first-order dissipation allow
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construction of an efficient implicit version of the scheme. These properties were asse:
on model advection and advection—diffusion problems using uniform Cartesian mest
which demonstrated true third-order-accurate solutions, stability, and quick convergenc
the steady state. Then, calculations of viscous compressible flow problems, on nonunif
Cartesian meshes and curvilinear grids, showed the ability of the third-order scheme
handle flows with shocks and to provide reasonably good solutions on coarse grids.
low sensitivity of the third-order scheme to grid coarsening, clearly demonstrated ol
separated laminar flow problem, could be exploited in, for instance, a multigrid strategy

In the present work, true high accuracy was not ensured on nonregular grids beca
in a first step, the truncation error corrections developed on a regular grid were retair
However, greater accuracy could be achieved by expressing the scheme truncation
on such nonregular grids and correcting this expression in order to make derivatives of
residual appear. Work is in progress on this subject.

The residual-based scheme could also be applied to other applications which do not ne
sarily require distorted grids, such as the direct simulation of turbulent flows or aeroacou
problems. Concerning this type of application, it should be noted that the ideas develo
in this study to build a third-order scheme are not limited to this order of accuracy, a
higher-order schemes could be devised using the strategy suggested in Section 2.1.

Note also that the extension of the scheme to three-dimensional problems is very strai
forward. For instance, the residual-based compact approximation (7) will become

Froc = —suua( | + 282+ 282 ) F + —sopia( 1 + =62 + =52
RBC = o 0141 622 T g% (Syzltz 61 639

+ 8_1253H3(| + %85 + é%) h,
using obvious notations.

Finally, the generalization of the concept to unsteady problems is easy to devise:
physical time-derivative must simply be included in the residual when building the hig
order correction and the dissipative term in order to ensure high-order space accurac
dual time step approach will conveniently allow a high-order accuracy in time.
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